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Abstract 
 

This paper reports on an empirical study aiming at 
improving the cost prediction model currently used in a 
major software enterprise. We used a multiple regression 
model and the data collected from two corrective 
maintenance projects. The improvement of the model 
performances is achieved by taking into account different 
corrective maintenance task typologies, each affecting the 
effort in a different way.  
 
1 Introduction 
 

Planning software maintenance work is a key factor for a 
successful maintenance project. Planning involves 
estimating of size, effort, duration, staffing and costs in 
order to guarantee the control of the maintenance process 
and reduce the risks and the inefficiencies related with the 
maintenance work. Indeed, early estimates and accurate 
evaluation permit to significantly reduce project risks and 
can be useful for predicting maintenance costs, comparing 
productivity and costs among different projects, learning 
the process performance and parameters, and so on. 
Software project costs are essentially human resource 
costs and this  entails that the effort (man-days needed for 
system maintenance) should be maintained under severe 
control.  
In the area of software maintenance there are few studies 
on the accuracy of effort prediction models [Jor95, 
CTA98, JSK00].  
This paper presents an empirical study about improving 
the estimation and prediction of corrective maintenance 
effort in a large software organization. 
To obtain a good estimation model the following are 
necessary: 

• an understanding of the process to infer and identify 
the characteristics that are important for the 
estimation; 

• the availability of a set of measures for the identified 
characteristics, that permits the construction of a 

variety of models and the selection of the more 
suitable. 

The subject organization has a nontrivial experience on 
estimation processes and model definition and 
classification based on intervention type. Moreover, the 
results of the adopted estimation model must be 
considered flexible, because often they are discussed and 
evaluated together  with the customer.  
The most confident estimation model adopted by the 
organization is deeply based on the system size. This 
measure, if necessary, is translated in equivalent kLOC 
COBOL from FP and from other different programming 
languages using the conversion factors indicated by Caper 
Jones [Jon99]. Finally the prediction model is expressed 
by a linear or a quadratic equation, depending on a 
breakpoint value of the unique independent variable, 
which is the number of annual corrective maintenance 
tasks normalized on the software code size (in kLOC). 
This model has been improved by considering  the impact 
of different maintenance task types. Section 2 presents the 
data set used in our empirical study; section 3 discusses 
the empirical results and the improved cost estimation 
model. Concluding remarks are given in section 4. 
 
2 Case study 
 

To improve the cost estimation model adopted within the 
organization we have analyzed the data of two corrective 
maintenance projects. 
Project 1 was conducted on a set of four 
telecommunication systems, based on a traditional 
platform, which manage the telephonic network 
information and the registration, configuration, and 
running of data and resources related to the new installed 
plants. In particular, the management of running data 
permits the activation of specific supplementary 
telephonic services. 
Project 2 was conducted on two subsystems of an 
accounting system implementing a particular financial 
procedure which is in charge of funds assignment and 



their distribution to the beneficiating institutions. It 
manages all the aspects involving with the accounting, 
such as introit management, expenditure management, 
annual financial closure, and so on. 
The data set was composed of 41 observations, 28 
corresponding to quarterly maintenance periods for the 
four systems of Project 1 and 13 corresponding to monthly 
maintenance periods for the two systems of Project 2. For 
each observation, the following data were available (see 
Table 1): 

− size of the system to be maintained; 
− effort spent in the maintainance period; 
− number of maintainance tasks, distinguished in three 

categories:  

• type A: the maintenance task requires software 
source code modification;  

• type B: the maintenance task requires fixing of 
data misalignments through database queries;  

• type C: the maintenance task requires 
intervention not comprised in the previous 
categories, such user disoperation, problems out 
of contract, and so on. 

The final set is composed of 41 observations, collected 
from the two projects, each with the metrics shown in 
Table 1 and Table 2.  
 
Metric Description. 
NA # of tasks requiring software modification 
NB # of tasks requiring fixing of data misalignment 
NC # of other tasks  
SIZE Size of the system to be maintained [kLOC]  
EFFORT Actual Effort [man-days] 

Table 1: Collected metrics 
 

Metric Min Max Mean Std.Dev. 
NA 0 154 37,2927 34,9923 
NB 0 1096 232,439 295,939 
NC 21 980 206,268 214,398 
SIZE 179,23 5277 2063,084 1682,884 
EFFORT 55 750,4 297,931 175,926 

Table 2: Descriptive statistics of the data set  
 
The application of the model adopted within the 
organization to the data set produces good results, though 
non excellent for all the subsystems (see Table 3 and 
Table 4). The measure PREDXX [BG83, Jor95] represents 
the percentage of observation with relative error at most 
equals to XX. 
It must not be surprising that a single metric model could 
have this good performances. The model is the result of 
many years of experience and has worked well when 
applied. Moreover, the used metric was choosen because 
it presents a strong linear correlation with the corrective 

maintainance effort. However, the model does not take 
into account the different types of maintenance tasks. 
 

 Relative Error [%] 
Subsystem Ave. Max 

1-1 13,44 31,04 
1-2 19,67 32,26 
1-3 126,17 144,39 
1-4 33,13 50,87 
2-1 24,57 66,66 
2-2 65,81 76,20 

Table 3: Organization model relative error 
 

PRED25 PRED50 
43,9 58,5 

Table 4: Organization model prediction 
performances 

 
3 Improving the effort prediction model 
 

Our observation was that the effort required to perform a 
maintenance task of type A might be sensibly different 
than the effort required to perform task of type B or C. For 
this reason we decided to use the number of tasks of the 
different types to improve the model and take into account 
the difficulty and the effort needed for the different 
maintenance task types. 
In particular we used a multivariate linear regression 
model of the type: 

Effort = b0 + b1 NA + b2 NB + b3 NC + b4 Size 

where NA, NB, NC, and Size are defined as in the 
previous section. The presence of the size of the system 
being maintained is consistent with the findings of 
[NV97]. Certainly, it would be very interesting to also 
consider the size of the maintenance tasks, but this metric 
is too fine grained and was not available.  
Indeed, the main problem encountered was the poorness 
of the data set. Indeed, although we had 41 points 
(maintenance periods) in the data set, they only referred to 
two maintenance projects and to 6 different systems. This 
also means that the size of the different versions of the 
same subsystem only slightly differs over the different 
maintenance periods.  
Another consideration is that the maintenance projects 
analyzed presented a very different distribution of the 
maintenance task types. In fact, project 2 has practically a 
null percentage of tasks of type B and has a percentage of 
tasks of type A (average 35%) clearly greater than project 
1, where tasks of types B and C account up to 80% of the 
total number of tasks.  
These characteristics can affect the analysis results 
because the data set is not well distributed, but this 
problem can only be overcome by increasing the size of 
the sample data set.  



Another interesting point is whether an intercept term b0 
should be included in the model. Such a term would 
suggest the existence of an effort type not directly related 
to the variables being included in the model and/or a 
constant deviation term to balance the model error. 
However, from the p-value for the significance test of the 
regression coefficient b0 we have statistical evidence to 
state that an intercept value is not needed. Thus, the 
intercept term b0 was not considered in the model. 
The correlation matrix (Table 5) shows the absence of 
strong correlations between the independent variables. 
The highest correlation value (0,6959) is between the 
number of tasks of type B and C, while the values of the 
correlations with A indicate independence among the 
variables. A potential reason for this result is that the types 
B and C are more recurrent than type A and generally 
have similar resolution effort because they do not require 
modifications to the software code.  
Also the correlations with the dependent variable (Effort) 
are congruent. The strong correlation with the Size 
(0,7394) can be explained by the fact that, generally, the 
growth of the system size is generally accompanied by a 
growth of the effort spent for its maintenance [LB85].  
A point of interest is the value for the correlation between 
the effort and the number of maintenance tasks of type A 
(0,4468). We expected a higher value, because this is the 
task type requiring more effort, as it involves changes to 
software code. A potential reason for this can be the 
limited size of the sample data set. Table 6 shows the 
model parameters. RMSE is the root of the mean square 
error. It is an estimate of the standard deviation of the 
residuals; AdjR2 is a version of R2 which seeks to remove 
the distortion due to a small sample size. 
To assess the prediction error on future observations, a 
leave-one-out cross-validation of the model [Mey86] was 
performed and the PRESS statistics [SO91] were 
calculated. The results are shown in Table 7. PRESS 
(PREdiction Sum of Square) is the sum of squared 
prediction errors: 
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It is evident that the values for the PRED measures are 
very promising: the model predicts about the 63% of the 
cases within a relative error less than 25% (PRED25) and 
about 88% of the cases with a relative error less than 50% 
(PRED50). This demonstrates an improvement of the 

model with respect to the figures shown in tables 3 and 4. 
Also, the relative mean error is 22,75% and can be 
considered very good. Indeed, as outlined in [VMP91], an 
average error of 100% can be considered “good” and an 
average error of 32% “outstanding”. 
Due to the excellent values for the PRED measures we 
assessed more efficiently the predictive capability of the 
model by performing a leave-more-out cross-validation. 
We decided to discard from the learning data set a 
prediction set composed of all the observations related to a 
single subsystem. In this way, we can be more confident 
about the model performances, because in this way the 
model has no knowledge about the characteristics of the 
subsystem used as prediction set. The results are shown in 
Table 8.  
 

 NA NB NC SIZE EFFORT 
NA 1,0000 0,2291 0,0086 0,1217 0,4468 
NB 0,2291 1,0000 0,6959 0,2857 0,4791 
NC 0,0086 0,6959 1,0000 0,2653 0,5933 
SIZE 0,1217 0,2857 0,2652 1,0000 0,7394 
EFFORT 0,4468 0,4791 0,5933 0,7394 1,0000 

Table 5: Metrics correlation matrix 
 
Var. bi (Coeff.) p-value R2 Adj R2 RMSE
NA 
NB 
NC 
SIZE 

2,311812 
0,1319257 
0,2607937 

5,944772E-02 

>10E-07 
0,013334 
0,000430 
>10E-07 

0,9683 0,9658 64,60 

Table 6: Model parameters 
 

R2
predict PRESS SPR Ave. Rel. 

Error 
PRED25 PRED50 

0,8328 206942,6 2127,42 22,75 63,41 87,80 

Table 7: Model predictive performances 
 

Subsystems   
1-1 1-2 1-3 1-4 2-1 2-2 

Average 
Rel. Error 

16,63 22,76 30,11 21,85 46,41 38,11 

Max Rel. 
Error 

49,79 61,37 85,01 35,45 112,27 56,56 

PRED25 71,43 71,43 57,14 57,14 14,29 33,33 

PRED50 100,00 85,71 85,71 100,00 71,43 50,00 

Table 8: Subsystem prediction relative error 
 
We can easily note that the relative error for the 
maintenance project 1 is still relatively low, while it is 
higher for the maintenance project 2: probably, this is due 
to the fact that the data set includes a higher number of 
observations from the maintenance project 1. This is also 
confirmed by the fact that the prediction relative error on 



the observations belonging to the maintenance project 2 
decreases if the prediction set is composed of observations 
of both projects (randomly selected), rather than of all the 
observations of a single system. 
 
4 Conclusion 
 

In this paper we have presented an empirical study from 
the experience of a major software enterprise in improving 
corrective maintenance effort prediction. 
A data set obtained from two different corrective 
maintenance projects was used as case study to 
experimentally validate and compare model performances 
through linear regression models.  
This data set was not very good, because of the limited 
metric set and the strong difference between the projects, 
evidenced by the absence of maintenance tasks of type B 
in project 2. 
It would have been interesting to also consider the effort 
of the single maintenance tasks or, at least, the effort of all 
the tasks of the same type. In this way, we could have 
been more confident in our hypothesis of considering 
different maintenance task types in the costs estimation 
model. Nevertheless, the resulting costs estimation model 
shows a good predictability.  
Various combination of the available metrics were also 
explored to look for better estimation models; in 
particular, considering the lack of tasks of type B in the 
second project and the correlation between tasks of type B 
and C, we evaluated a model grouping NB and NC. The 
results were slightly worst than the model distinguishing 
between the two maintenance task types, and then 
acceptable.  
The final model is easy to use and understand, because the 
number of maintenance tasks and their typology in a 
specific time range are reasonably predictable, where a 
reasonable maintenance experience on the system to be 
maintained is available.  
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